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Previously I built Boundary’s
historical database

I've spent most of my career thinking about time series data and building tools to help answer questions about that kind of data. Previously I built the historical database 
powering Boundary which I named after a competitive eater.



[kobayashi pictured here]



Now I build analytics infrastructure
at GitHub

d
Now I work at GitHub building analytics infrastructure. But when I joined GitHub we didn't have a strong analytics presence so part of the challenge was for the team to 
figure out how to structure itself and how to connect with the rest of the company. This was about two years ago so GitHub was already a strong company. We knew we 
wanted to me more data driven in our operation but it's not intuitively obvious how to add this kind of rigor to an already high functioning company. So much of the 
teams' responsibilities came down to figuring out how to structure the team and how to be effective.



Analytics Services Team

&
Analytics Infrastructure Team

Presently, we've arrived at this dual mode of function. We are part services team, part infrastructure team.



Question-driven Development

- question-driven development

- company externalizes questions to us by way of a repo + issues


This philosophy of question-driven development came early on in the formation of the team. The services part of the team largely acts as a place for other teams—sales, 
marketing, product, even system engineering—to externalize a lot of their ad-hoc analytical functions. And our interaction there is pretty simple. We have a GitHub repo 
where others create issues, then we start a dialog to get more information until eventually we can either answer their question.



Answer enough questions and 
patterns start to emerge

And in answering these questions and thinking about our supporting infrastructure, there are some patterns that have stood out. So we're going to spend the rest of our 
time together today talking about some of these patterns, and work through how to think about building some really solid analytics infrastructure.


And this talk is more about things to take into consideration and how to approach the problem than it is about what technologies to use. I’ve also done my best to put 
something together that is very practical without basing too much of the talk on problems specific only to GitHub.



Anecdotes

So let's start with a couple of anecdotes and come back to some of these issues along the way.


Rowers with LEDs attached to their paddles. Timed exposure.




And if we're going to do that, let's start with something music related. People like music and it makes them happy so why not right?




what do musical scales being 
played on a violin look like?

What do musical scales being played on a violin look like?



Well, I'll give you a hint.  It doesn't look like this.



nope

This is the ideal we think of. This is what someone with a violin would read in order to know how to play the music. But if we measure the actual sound over time, and the 
strength of the sound at various pitches, it looks quite different.



reality

We get something like this. This is a spectrogram. Does anyone know what a spectrogram is?  Well a spectrogram is a way to visualize sound over time.
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Brightness = Amplitude of (frequency, time)

And specifically what the strength of the sound is at the various frequencies that it gives off. And the way to read a spectrogram is, time runs left to right, and frequency 
goes from low to hi, bottom to top. And at the intersection of frequency and time, the intensity of color tells us the volume of that sound.



So what do we see here. Well, the individual notes are pretty clear in the vertical banding. But the first thing that jumps out are these horizontal lines. What are these? 
Well, the lowest one is the base note. This is the note being intentionally played by the violinist when she reads sheet music and plays a note. But the horizontal lines 
above that are the harmonic frequencies. These are what give the note character, and depth, and complexity. Without these, you would be left with a pure tone. One of 
those pure notes that might come from an old computer.  This is what is known as timbre, and it is largely how we are able to distinguish a middle C played on a violin, 
from a cello, or an oboe, or a piano.




And if we zoom in, there is even more going on here. See this little jitter. This is likely where the violinist’s fingers moved in preparation for moving to the next note. And 
the various noise we see between the harmonics might be explained by hands moving over the grain of the strings themselves.


Whatever the case, there is a story to be told here. And we could probably discuss this image for the rest of the talk trying to parse out all of its structure.



Now that's all fine and good for a single instrument, but what happens if we mic a whole orchestra and and plot the aggregate spectrogram? We definitely see a lot of 
structure but it is difficult to tell each performer apart. All of the instruments are being aggregated together here in one view meaning there is loss of dimensionality--
specifically the dimensionality of which instrument is making which sounds. We'll come back to this in a second.



what do service 
latencies look like?

So, with this in mind. Let's say you have a service in production. What do its response times look like?




Like this?



nope

Well no. This might be how you represent the mean or the 99th percentile latencies, but latencies are not point in time measurements. They are a distribution of values 
over a window of time. And if we measure that distribution of small enough windows of time, we see something like this.
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- Same structure as audio spectrogram

- Low latency at bottom, arc of higher response times.


- Bottom is reads, arcs are writes?

- Why two arcs for the writes? Coming from two different hosts?

- What are the hidden variables that explain bimodal structure of this chart?


- Explaining this structure improves our mental model of systems in production and helps us to explain what their dynamic behavior looks like. And when it changes, it 
gives us something to explain.


And low and behold some of the same kinds of structure we saw in the violin spectrogram, we see in this latency heat map. Now there aren't harmonics, because these 
aren't audio signals, but there is structure.


We see lots of low latency data at the bottom. That's good. Then we see a few bands of latency forming an arc. And there seem to be two bands. How might we explain 
what's going on here? Well, the low band might be reads with the bands up top being writes? That might make sense. But why are there two bands? And why do they 
track so closely to one another. Perhaps if this data is coming from two different hosts which back a service, this could be explained by slightly different write 
performance on the two hosts. Looking at the distribution this way bakes bimodality jump out. And when you see this kind of pattern, your curiosity leads you to find any 
hidden variables. And this whole process can be a tremendous boon for your mental model the real behavior of your infrastructure. Not just what your ideal is. Because 
your ideal is almost certainly wrong, or at least has holes if you don't measure it.



Moral:

Aggregation is information loss

So to wrap up this anecdote, there are a few morals to take away. The first is that aggregation is information loss. It can be useful, but it does destroy some information. 
Just like it was difficult to make out the individual instruments in the sound coming out of the orchestra, it can be difficult to find the hidden variables in our data when it's 
all aggregated together.



Moral:

Latencies are distributions not 
point-in-time measurements

And that it is important to think of latency information as a distribution that changes over time, not just a value that changes over time. And tooling that makes it easier to 
us to get visibility into this kind of thing would be a really wonderful thing for the community to have.




Tail latencies are still good

👍

Also to be clear I’m not proposing this view as an alternative to showing tail latencies. They are an important thing to understand and control.


I’m simply using this example to show that if we simply look at the data, a lot of previously not seen structure can show itself.



In 1872, the former governor of California, 
Leland Stanford, a businessman and race-horse 
owner, hired Muybridge for some 
photographic studies. He had taken a position 
on a popularly debated question of the day — 
whether all four feet of a horse were off the 
ground at the same time while trotting.

“

So let's look at one more anecdote. Back in 1872 Leland Stanford, yes the founder of Stanford University and former California governor, took a position on a popular 
question of the day--whether or not all four feet of a horse are off the ground during full trot. He employed Edward Muybridge to help answer this question.



Happens so fast that it’s not 
obvious by watching

Camera shutters and human 
reaction are too slow to prove



 And Muybridge answered this question by tracking a horse during full gallop, taking lots and lots of pictures over time.



Here we see the individual frames from the last video.



And you can clearly see in red here where all four legs leave the ground.



“The negatives of these photographs were made at intervals of […] 
about twenty-fifth part of a second of time”

And what he found was yes, all four feet do leave the ground. But no one had observed this before. It simply happened to quickly for a person to see it or, much less, 
reliably prove that this was happening. Even artists before this time, when they would paint a horse in trot, would show one or more of the legs touching the ground. And 
Muybridge didn't invent a fundamentally new type of measuring device. He just took something we had already, photography, and made it go really really fast and 
product lots of time series information in an effort to catch what our eyes couldn't.



I’ve been transferring 5Gbps 
over a 10 GigE for a full minute. 
Is switch capacity being 
exceeded?

Q:

So you maybe know where this is going now. If you've been transferring data at 5 gigabits per second over a 10GigE connection for a minute, am I saturating the link?



???????????????????????????????????????
???????????????????????????????????????
???????????????????????????????????????
???????????????????????????????????????
???????????????????????????????????????
???????????????????????????????????????

A:

Well, it might not even cross your mind that this is a possibility. Especially if you are looking at one minute aggregations in something like Graphite. You're nowhere near 
the limit of a 10GigE device.



But if you actually measure and look at what is happening second by second, or even millisecond by millisecond--in other words, take snapshots with ever-increasing 
frequency--you might see something quite different. You might see throughput topping out around 10 gigabits, thus inducing retransmits or lost datagrams.



Moral:

Measure as often as possible

So what is the moral here? Well, measure as often as possible. Computers do things really quickly so measuring at the rate of human thought and you may miss a lot of 
what's really happening. Kind of like trying to get situational awareness under a strobe light on a very slow cycle.



Be particularly conscious of 
information loss in visuals

Especially when
pixel resolution < data resolution

And we want to be particularly careful using charts and graphs to infer something that lies beyond their level of precision.



Mechanics of
Data Movement

So now that we’ve looked at some entertaining anecdotes, let’s put some of this to work. Let's start to consider more of the mechanics of how to collect data and move 
it about in a way that let's us get a better understanding of the stuff we are are trying to measure.



Automatically collects 80% of 
interesting user events on the 
web

“
First some motivation. There are quite a few vendors and vertically integrated systems that will collect lots of useful stuff for you. And you should definitely use them. 
There is a lot of value there.



Automatically collects 80% of 
interesting user events on the 
web

“
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But be careful. Because they don't know your product like you do. They don't have a mental model of how your users behave. They don't know your systems and your 
infrastructure like you do. There is all of this context they are missing.



- @blinsay

I think my friend Ben Linsay summed it up pretty well -- "Act like you know my website!".



80% 20%

Value
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And while it's tempting to think of our data collection problems following this kind of ill defined 80/20 rule - where we get 80% of the value for 20% of the effort, that's not 
really the whole truth.
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Uniqueness of Event Collection

∫f(x) = Total Effort 
lim [∫f(x)] = ∞

0.0 1.0

x→1.0

The questions that are most specific to your situation are going to require special attention. They are more likely to require data collection highly specific to your situation 
simply because it's your situation. And that the more specific our questions become to our specific situation, the more difficulty we should expect to encounter collecting 
that data.



the universe is under no
obligation to be observable

Because it's a sad sad world. The universe is under no obligation to be observable by any of us.



and it gets worse

And it gets worse,



our tools don’t help

because our tools don't helps us in this regard do they?



the database backing your 
product holds “live” 
transactional data

…but

it doesn’t help you understand 
user behavior over time

We have this rails app and use active record to save user data to MySQL, but that doesn't really help us understand how that data has changed over time does it?



routers intelligently move data 
from place to place

…but

they don’t help you understand 
communication patterns in a 

distributed system

And our network card helps us communicate with the outside world, but we don't have pervasive tools at our disposal for really understanding communication patterns in 
a distributed system.


So these tools do their job, but we have to bring other tools to bear to understand how they are doing their job and how their behavior changes over time. We have to do 
this if we hope to really understand what's happening.



an aircraft moves humans and 
cargo from place to place

(in a giant metal bullet traveling at half the 
speed of sound which is pretty cool)

And at this point I'd like to run with another example. The aircraft. It moves people and cargo from place to place, but what if something goes wrong. The propulsion 
system isn't going to help us figure that out. It's job is to make the plane go. The lavatory isn't going to help. No, we have to build other systems to help us understand 
the precipitating state that led to a failure.



but…

an aircraft doesn’t tell us why it 
crashed and the conditions that 

precipitated failure

The propulsion system isn't going to help us figure that out. It's job is to make the plane go. The lavatory isn't going to help. No, we have to build other systems to help 
us understand the precipitating state that led to a failure.



The need for a crash-survivable recording device became 
apparent following a series of airline crashes in the early 1940s. 
This spurred the Civil Aeronautics Board (CAB) to draft the first 
Civil Aviation Regulations calling for a flight recording device for 
accident investigation purposes. However, recorder development 
was delayed by shortages brought about by World War II. As a 
result, such a device was not available, and after extending the 
compliance date three times, the CAB rescinded the requirement 
in 1944. The CAB issued a similar flight recorder regulation in 
1947, after the war, but a suitable recorder was still not available 
and the regulation was rescinded the following year.

“

And we understood this back in the 40s. After a series of airline crashes the CAB (Civil Aeronautics Board) drafted the first regulations calling for a flight recording device. 
But, we had a little thing happen around this time called World War II and we didn't have the resources to develop this piece of technology. So again in 1947, issued 
another regulation was issued, but we still didn't have the technology.



Finally in 1957, after determining that suitable recording 
devices were available, the CAA issued a third round of 
flight recorder regulations. These regulations 
called for all air carrier airplanes … to be fitted with a 
crash-protected flight recorder by July 1, 1958, that 
records altitude, airspeed, heading, and vertical 
accelerations as a function of time. This marked the 
introduction of the, first true crash-protected flight 
data recorder.

“

In fact, it was a full 10 years later in 1957 that the technology was available that a third round of regulation could be put in place. And they were pretty simple. They 
recorded altitude, airspeec, heading, and vertical acceleration.



And they did it using this. A Foil Oscillographic Recorder.



increasing order, visibility

a triumph of monitoring and system visibility

And this thing is truly a triumph of visibility. So let's work through it from beginning to end (or flatten the list and work it from head to tail, there's a functional programming 
joke in here somewhere).
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And for purposes of analogy, we’re going to think of the job of the foil oscillographic recorder in this way, from start to finish. And we’ll see what we can learn from it.
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The universe is indifferent to our pain.
An unbounded amount of work happens here.

First the responsibility is to collect the data we care about in the event of a crash. This is where an unbounded amount of work happens because, as we all know, the 
universe is indifferent to our pain and it doesn't care how hard we have to work to understand it.




So if you remember nothing else, it would be to do _whatever it takes_ in the data collection phase. But specifically, here are some ways to construct good events.



Event Collection
• Collect as much context as feasible. Esp context that is

• Expensive to retrieve later

• Mutable

• PII Sensitivity

• Collect as frequently as feasible (cc Muybridge)

• Don’t wait until you have a perfect, or even working, 
analytical system. Collect for the future.

Events should contain as much context as possible. Imagine that you are processing this event at some time in the future, and it should contain everything you need 
without joining with some other data source. Because that's probably going to be really costly and add lots of complexity and latency to this hypothetical thing you'll be 
building.


This is especially important when the context is mutable and may change over time. For example, one thing we do at github is gauge language popularity over time. So if 
we look at a stream of pushes, we should be able to look at this event and directly unpack what languages are contained in the diff without actually looking back at the 
code or, worse, reaching back into git storage to find that out.


Another thing is to collect as frequently as possible. Sometimes, you collect events representing some outside stimulus, like a page view. But at times when you're polling 
some other metric like disk utilization, network throughput, the value of a stock, etc, 


And most importantly, start collecting _something_. Because before you do you message loss rate is 100%. And once you do start building out more and more analytics 
infrastructure and want to start training your models, you'll be glad to have all of that historical context to use.



Helpers
• libpcap

• Pull stats from packet headers

• Instrument ActiveRecord models, but careful not to 
block unicorns

• Context collection accrues latency

• Write events to separate process which batches and 
submits to event collection API

• Local daemons to poll iostat, iotop, jstat, etc and report 
to collector

And I've mentioned the database and networking examples a couple of times, so I thought I'd mention some ways of dealing with that here.


If you're interested in measuring how a computer is communicating over the network, libpcap is a good choice. It is a nice C library that lets you inspect packet headers 
for port/protocol information and payload sizes. It's a nice primitive upon which to build network visibility tools.


As far as instrumenting changes to a user database, the approach we've taken at GitHub, since we use ActiveRecord, is to instrument the models themselves to capture 
any change events. The thing to look out for here is that this work happens in the context of a web request and we'd like to keep those fast. We don't want our event 
collection to start slowing down the site and creating a frustrating experience for users. So we either trigger a background job at this point, or write these events to a 
local queue, then we have a process which does nothing but pull events from that queue and write them to our event collection service.


Another approach we take is to simply write little daemons that poll various system stats and push them up to a collection service. And remember the lesson earlier 
about polling to do it as frequently as feasible to avoid the strobe light effect.
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Normalization
Make everything look like everything else
Think hard about type systems

With event collection out of the way, we can start to discuss this next step. Once the measurement devices get their reading, they have to turn those signals into 
something that normalizes the way their etchings take place. They need to stay in their lane and not corrupt data written by others. The analogy here isn't direct, but one 
way to think of this is in terms of the types you use to represent your events. We want a predictable structure for these events so that they can be recorded uniformly for 
interpretation later.



Predictable Event Structure

• Differentiate between dimensions and 
metrics

• Esp important in dynamically typed 
languages, but important for static as well

• Common data represented uniformly

• Timestamps, logged in user ids, etc

And I know I mentioned type systems, but don't necessarily mean that in the context of any particular language so we don't have to get into a debate over static versus 
dynamic typing. But there is some predictable structure with which we want to imbue our events.


First, it's important to have a distinction between dimensions and measures. Dimensions are the things like when something happened, the user that performed an 
action, the type of event, if the event is, say, a commit to a source code repository, the languages used in that commit are another example of a dimension. These are the 
the parts of a that categorize the metrics. And the metrics are the numbers you're collecting. Things like latency, number of unique users seen, or lines of code contained 
in a particular commit to a source code repository.


Now, if you're using static typing to represent events, it's still a good idea to know which of your properties are dimensions and which are measures. But the distinction is 
especially important in dynamic languages to help you know where to look for your categorical data, and where to look for your numeric data.



Coll
ec

t

Nor
mali

ze

Ana
lyz

e

Rec
or

d

Record data to the log

So on to recording. This is the point at which, in the recorder we see here, the data is actually etched onto the scrolling foil. It's done here, iirc at a rate of about 6 inches 
per hour.



Event Recording
• API

• Simple HTTP API (Post JSON to collector.yourproduct.co/events)

• Storage:

• Prefer data logs over queues

• Think Kafka instead of Kestrel, etc

• Multiple consumers with independently managed offsets

• Consumer groups keep data flowing in the event of a failed consumer

• Dedicated consumer for writing blocks of data permanently to S3

• Balance compactness with utility. Make data consumable by Redshift if 
possible

• EMR over raw data using HIVE

But luckily we don’t have to etch our data onto a foil sheet. We get to build a handy service with a well-defined API. Nothing novel here. We just accept as a POST, a 
collection of events.


What we do next isn't particularly difficult but it is easy to get wrong. We write the events to a data log. And the distinction here between a data log and a queue is very 
important. As you might recall, queues allow one consumer to get one event. With a data log, each consumer can, if it so wishes, consume the whole stream. Each 
consumer, or group of consumers, can consumer a data stream fully. This means that multiple workers, in parallel, can focus on computing different things on the data 
without interfering with or blocking one another. I'm really a big fan of using Kafka for this. 


But the important thing here is that using a data log versus a queue allows lots of different systems to process data as it is received rather than having everyone block on 
one service to doll that data out and figure out how to multiplex that out. But if you want continuous visibility, use a data log.


And because data doesn't stick around in your data log forever, one nice thing to do if you can, is have a dedicated consumer which does nothing but batch up events in 
blocks of, say, 10 minutes or an hour, and upload them to S3 for permanent storage. It's pretty cheap and opens up some really nice analytical capabilities like RedShift 
queries and running HIVE queries over your raw data.




Event Recording “Helpers”

• Geocode IP addresses

• cc Normalization

• Attach other valuable context to incoming 
events

Now thinking about the API that is accepting events and writing them to the log, this service can actually add value to the data it receives. This is one of the most 
important things you can do to localize complexity rather than distribute it out to all of the event collection sites. For example, if your events contain IP addresses, you 
might want to geocode those to know what region or country they are coming from. And there are probably lots of others specific to your own use cases. It's important 
enough that I wanted to call attention to it here. This is also something that, if you've done well at normalizing event structure, it becomes simpler to augment events with 
this additional categorization.



Feedback

• Send events back to yourself

• The system we are building needs to, itself, 
be observable.

• Can dog-food our own API

• Breathe consciousness into the universe by 
making it self-aware

And lastly, the system can send its own significant events back to itself once you've reached a certain point of sophistication. For example, if you have a consumer 
reading from the data log and uploading blocks of events to S3, you might send one more events into the stream which describe that upload event - how long it took, 
how big the file was, when it was uploaded, etc.
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Read, interpret, take action

Now, we get to the last part. Analyzing, interpreting, and taking action on the stuff you've been collecting. The key observation to make here is that we have a streaming 
system. And that streaming system has lots of normalize, well structured, context-rich events coming from all corners of your infrastructure. From how users use your 
product, to what is happening in your infrastructure, to how various systems are performing. And, again, because we are representing this data in a data log, we have 
continuous visibility into this stuff. And our ability to see how the world around us is changing, we're limited only by the latency from collection to being picked up by one 
of the consumers.




Streaming System

=
Continuous Visibility

The key observation to make here is that we have a streaming system. And that streaming system has lots of normalize, well structured, context-rich events coming from 
all corners of your infrastructure. From how users use your product, to what is happening in your infrastructure, to how various systems are performing.


And, again, because we are representing this data in a data log, we have continuous visibility into this stuff. And our ability to see how the world around us is changing, 
we're limited only by the latency from collection to being picked up by one of the consumers.




Analysis
• Direct use

• Graphite is good but is best for data of 
low dimensionality

• Aggregate interesting data into 
PostgreSQL

• Let the database do the work for you!

• Roll your own visuals on top of that

The first is direct use. That is, directly taking that information, putting it in a database, storing it in hadoop for bulk analysis, and even building visualizations directly atop 
some of that data. Graphite is a good, but remember that these well constructed events have a lot of context and a lot of dimensions--and graphite isn't great at handling 
data with dimensionality, and especially not high cardinality dimensions. But it is a good tool to use and it's super hackable and can save you from needing to write your 
own visualization tooling.



Analysis

• Perform aggregations and joins on one or 
more streams

• Write that out as another stream

• Repeat to form higher and higher levels of 
analysis

The other camp of types of consumers I wanted to talk about real quick is the kind that simply perform some kind of aggregation and feed it back into the event stream. 
Say you have several consumers that want breakdowns of page views per day by country. Rather than having everyone who wants that kind of data compute it from the 
raw stream, you can have one consumer do that aggregation work, write it back to kafka as a new topic, then have the consumers feed off of that. And for this type of 
work specifically tools like Samza can help you to manage that lifecycle dealing with a consumer dying and coming back up with the right state.



fin?

And this is where I really hate to end the talk, because at this point is where all of the really interesting stuff happens. And we’re starting to build some demonstrations 
internally that help us see GitHub data in ways we haven’t seen it before. It’s really exciting and I hope I’ve helped you to think about your own problems in a different 
light so that we can share in this excitement together.
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